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The algebraic system of equations of infinite order studied here occurs during 
the solution of the problem of the theory of elasticity concerning a symmetri- 

cally loaded semi-strip clamped at the one end. The system is solved using the 
iteration method. First, out of the matrix of the system a sub-matrix is selected, 
characterizing the behavior of the solution at large values of the index of the 
unknown. It is proved and confirmed by concrete examples, that the solution of 
the basic system differs little from the solution of a simplified system. An asym- 
ptotic expansion is obtained for the solution of the simplified system for the 
large values of the index of the unknown and an approximate method is given 
for the determination of its coefficients. 

An infinite system of algebraic equations for a semi-strip with stress-free 
longitudinal edges and displacements specified at its end was discussed in [l] 
where it was proved that the system is completely regular. Earlier [Z] the beha- 
vior of the solution at large values of the index of the unknown was explained 
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in a different manner, when solving an axisymmetric three-dimensional problem 
for a rigidly clamped plate. Only the first term of the asymptotics was taken 

into account when concrete problems were solved. 

1. We consider a symmetric problem for a semi-strip under the following boundary 

conditions [3] : 
z=o, u=o, ?I=0 (1.1) 

y=l, cr II1 = -P6 (x - c) /h, 2x(Yl = 0 U.2) 

Here u and u denote the displacements along the z,- and y,-axes, respectively,(z,=z&, 

4A 
yi=yh) ,while zslyl and cryI denote the 

ch -P 
tangential and normal stresses (see Fig. 1). 
In solving the problem we use the funda- 

/ 
/ mental relations of the plane theory of 
/ 
/ 

elasticity written in terms of displace- 

‘--x, 
/ 

ments [3], and write u and u as a super- 

/ position of the solutions of the following 
/ 
/ two auxiliary problems : 

1) the problem for a semi-strip with 

P the boundary conditions (9 (x) is an 

Fig. 1 unknown function) 

z = 0, v (y) = 0, o,, = 0, 1 y 1 < 1 

y = 1, ‘G Xl 1/l = 0, du / ay = II, (z), o<x<-J 

2) the problem for a semi-strip, periodically continued into the region 1 y 1 > 1 
with the boundary conditions 

x = 0, ox, (y) = o ($7 ?J (y) = 0 

Y = 1, ‘Gx,y, = 0, du / dy = 0 

Here 4 (x) and o (y) are such that the boundary conditions (1.1) and (1.2) hold for 

the general problem. 
A solution of (1) is given by 

2: 
Ui = 7 

U 
(A, ch hy + A, ky sh hy) cos hx + “‘$;y(;;;)] dh + C, (1.3) 

0 

vi = $1 (B, sh hy + A&y ch 3Ly) sin Lx dh 
0 

-2% (V 
’ =(v+l)hshh’ 

A,=-+, 1 
v=n 

0 Ul = - s m $0 (1) A+ 2vG sin hx dh 
hn (Y + 1) sh2 h 

0 

z 

A+= sh2h + 2J., I#~ (h) = 1 q(t) cos ht dt 
0 
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and a solution of (2) is given by 

(1.4) 

5 vl = 2 $ (- l)‘“exp(-qz)c, (v-l -vyOn5) 
n-1 @+I) 

Here C, and C, are arbitrary constants, p is the Poisson’s ratio and G is the torsion 
modulus. Formulas (1.3) and (1.4) imply that the solution of the problem obtained by 
superposing the solutions of (1) and (2), satisfies the boundary conditions 

.1: = 0, ox1 = o(2/>, D(Y) =o 

y = 1, rxl.f,, = 0 
We further choose 9 (x) so that the condition (1.2) holds for the normal stress, Let us 

substitute o v, from (1.3) and (1.4) into (1.2) and apply the Fourier sine transform to 
the resulting expressions. This gives 

$0 (h) VA, - 
(v+ l)sh2h rn=l 

P sin hc 
sicAtdt = -c 

0 

(1.5) 

(Pm (h) = [(Y + 1) a,2 - (Y - 1) a21 / (om2 + a2)2 

The function o (y) is defined in such a manner that the boundary condition (1.1) holds 

for the longitudinal displacement. To do this, we substitute (1.3) and (1.4) into (1.1) 
and apply the finite Fourier cosine transform over the variable 9. Then 

4G(--1)” Y 
ck = n(v+2)h s 

$O@)Wk'Pk(h)dh 

0 

(1.61 

c, +c, = 0, k=O 

Taking into account the relations connecting I#,, (h) and $ (t) in (1.3). we transform 

(1.6) into 
2G (- I)” 3” 

Oh-= (vf2)h s 
q(t)exp(- o,t)(i ,+w@)dt 

0 

(1.7) 

Thus the obtaining of the solution of the problem is reduced to the determination of two 
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functions $ (t) and ok using (1.5) and (1.7) or (1.5) and (1.6). 
Let us now substitute (1.7) into (1.5) and, after some manipulations, apply to the ex- 

pression obtained the inverse Fourier sine tranform over the variable ?L Having done 
this, we use the expression for 9s (h) appearing in (1.3) to construct an integral equa- 
tion in ‘II, (t). (Another method of constructing an analogous integral equation is given 

in [4]). Substituting I#~ (h) obtained from (1.5) into (1.6). we obtain the following sys- 

tern of algebraic equations: m 

A(k) = 2 ~,A(m, -t- dk, k>,l (1.8) 

h i/4nv (v _I- 2) h 
ACk_) = ar,(-- 1)‘ 

P(v+ 1) 

llf - 
8 

km- - nv(v+2) I 
’ ho/#,(h) (Pm (h)sh2 h $ 

+ 
0 

m 

d,= ’ s Qk’Pk (h) Sill hC sh2 h $ 
+ 

0 

2. Let us investigate the system (1.8) which can be written in the matrix form as 

A=LA+d (2.1) 

A = (Ad, d = @k), L = @fkm) 

A unique bounded solution of (2.1) exists and can be found using the method of succes- 

sive approximations. In fact, let us consider a Banach space R of all bounded sequen- 
ces of real numbers Yk with the norm 

11 y 11 = maXk 11 yk 11 (2.2) 

The condition that the operator L is bounded in R and the fact that d c R together 

imply that the operator L exists in D z R. The condition of boundedness of the ope- 
rator L has the form 

II LA II G 4 II A II (2.3) 
From [1] follows 

Q< 
4 (p - u2)‘/2 - +$ [I - $ arctg &’ - 1,5/z] < 0.64 (2.4) 
Jt (3 - 4u) 

i.e. q < 1. Thus L is bounded and is a compression operator. 
Next tie discuss another method of obtaining the solution of (2.1). Out of L in (2.1) 

we select an operator L, characterizing the behavior of L at large values of the indi- 
ces k and rn oc 

Li = cEkm), Ekm = - nvt;+2J \ h"k(fk(h)'fm(h)d)L 
(2.5) 

0 
In this case L has the form 

L = L, + L,, L, = (Gkm) 

63 

‘%cn, = 4 nv (Y + 2) I ’ h"kcpk(h)cp,,,(h)~,,(h)dh 

0 

(2.6) 

(2.7) 
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$1 (a) = [(I + 2h - exp(--2h)ll A+ 

The conditions of boundedness of the operators L, and L, in R are 

II LA II < Q II A IIf (1 -LA 1) < : (1 A 1) 
where 

(2.8) 

(2.9) 

e < 0.282 (1 - p)s / (3 - 4p) < 0.094 (2.10) 

and the inequality (2.4) holds for q . When the conditions (2.3). (2.4), (2.9) and (2.10) 
hold, an iteration method described in [5] can be applied to the operator equation (2.1), 
as follows : 

A+I = &&+I +-&A, + d, r>,O (2.11) 
and we have 

11 A - A,+, (I< f I/A, - A+1 11, f = & 9 r 2= 0 (2.12) 

The following relation (in which A ,, is an arbitrary element) can be obtained 

11-4 - &Ii<f’(IA,- &II, Aoc R (2.13) 

From (2.4) and (2.10) we have 

f < 0.263 (2.14) 

The estimates (2.13) and (2.14) indicate the rapid convergence of the method. (For 

certain values of p the estimate (2.14) is too high. Thus for p = 0.317 we have 

q < 0.39, E < 0.076 and f < 0.125.) 
Let us write (2.11) in the form 

(2.15) 

(2.16) 

The solution of (2.11) can now be written in the form 

A,+, = 2 a+, 
n=lJ 

Thus we reduced problem of solving (2.1) to that of solving the systems of equations 
(2.15) and (2.16) which differ from each other only in their independent terms . For 
this reason the investigation of the system (2.15), (2.16) can be reduced to investigation 

of a single equation of the same form as (2.15), under the condition that the indepen- 
dent term is known. 

Before investigating Eq. (2.15). we shall formulate some auxiliary lemmas. 
Lemma 1. The solution of the system (1.8) can be written in the form 

A(k) = c, / W?, Ok = Icn, El = 'I2 

where Ck is a bounded solution of the completely regular system: 

c, = r, Cm~~,,,O~L1/OmL’ + dk'fik", k>l 
Tll=l 

The following estimate also holds: 
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q = s,s, [nv (Y + 2)cos qq-’ , ss = (Y - l)sl+ 

n (1 + vq) 2 cos F 
II 1 

-1 
, sg =v--1 + 

Z(Y + 1)Elexp(- Y - 1) I +~2,“;~~1~i) , 

S,=4% (n + 1) (- l)n a-~~-+l 

n=O (2n + 1 + &I) (2n. + 3 + 4 

a2 = (1 - p)/p 

Lemma 2. Let @ (cl + it) be an analytic function defined in the region 

- 1 < c, < l/2 and let 1 CD (s) 1 satisfy, in this region, the following conditions: 

IcD(~~*it);<At-“, a>O, i<t-=Cc= 

1 CD (cl -& it) 1 < B + EtP, P>O, o<t<l 
Then the relation 

m cl+im Cl+c 

2 1 0 (s) (m)Y-s-l& = \ CD(s) 5 (xm)“Ws 

rn=l c,-im c14i, ??I=1 

holds for all cr < Re y < ~1. The following estimates are used in proving the lemma: 

1 z&I < (A + E) (nm)-c~(n 111 n)-’ 

0 < SN <(A + E) rc-2-cl+0 (111 q-1 [(Cl - a)-’ + 

(N + 1)-l] (N + I)-(+) 

c,+iCC 

2 m =(2xi)-' 1 ~(s)(m)-Sds, 
cl-i00 

s,y = 1 5 (rcrn)~-1 z,I 
m=N-j-1 

Lemma 3. The equation 

A = 2x cos ny - 4y2 + 1 + x2 = 0, x = 3 - 4~1 P > 0.073 (2.17) 

has in the region o > 0, 'c > 0 (y = o + iz) a unique real root 1/2 < o,, < I, 
while the remaining roots are complex and form an enumerable set. In addition, 

Rey,=a,=k--eE,, O<E~<~/~, n=f,2,3 ,... 

8, Let us now investigate (2.15), rewriting it in the following form : 

A o(k) = Ii EkmAom + dk, ii>,i (3.1) 
m=1 

The following theorem holds. 
Theorem. At large values of k the solution of (3.1) can be written in the form 

of an asymptotic expansion 

4,~h.j = 2 ( tz,~h_~n + tino;‘ll) + RN, Re m > 0 (3.2) 
n=Cl 
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where,?, are the roots of Eq. (2.17) and RN is the remainder term for which the follow- 
ing estimates hold : 

1 RN 1 < FJ (2N + 2) / (okc)*N+l, o<c< 1, olrc> 1 (3.3) 

1 RN 1 < FJ (2N + 2) / coiNtl, c > 1, I’(N + 1) = N!C (IV) 

Here F, and F, are constants independent of k and N, and c is given by (1.2). 

Let us assume that A 0~~) in (3.1) are known. In this case, when k varies continuously 
over the range 0 < k < 00, the right-hand side of Eq. (3.1) is a known function con- 
tinuous in ok = kn . We denote this function by 8 (ok). By virtue of the fact that 

A o(nl) is a solution of (3. l), the following relation holds for k = 0, 1, 2,... : 

0 (ok) = AON) (3.4) 

and this implies that 8 (ok) continuously extends AOck) into the region 0 < k < co. 

Let us set in (3.1) nk = co. Then we have 

13((o) = 5 Ao(m&,&) t d(w) (3.5) 
Tfl==l 

Let US apply the Mellin transform over the variable o to both parts of Eq. (3.5). assum- 

ing that 8 (w) refers to the class of functions for which this transformation exists. We 
denote 

CD(r) = ~e(C0)o,Y-‘d9& r =rs+iz, 61<6< 52 (3.6) 

K(r)_~(vs72-I)/y(V+2)CoSz(ny12), ldl<i (3.7) 

D(T) = n(l + ~7’) [I’(r)sin(xr/ 2)c+ - I( IsI< (3.8) 

(3.8) 

where *I (k) is given by (2. 8). Then (3.5) becomes 

(I, (7,) = K (7) i Aa (nm)‘-l + D (79 (3.10) 
VI=1 

It can be shown that Lemma 1 also holds for the system (3.1). Therefore the sum in 
(3.10) exists for all o < ‘/a and CD (y) is analytic in the region - 1 < o < i/a. 
Let us investigate the behavior of the function CD (y) in the region o > - 1. From 

the formulas (3.4), (3.6) and (3.10) we obtain, using the inverse Mellin transform, 
Cl+-iW 

Ao(m) = (aniy 1 @((s)(m)-s ds, - 1 < Cl < l/f (3.X) 
cl-im 

From (3.10) it follows that @ (s) satisfies the conditions of Lemma 2. We therefore 
substitute (3.11) into (3.10) and apply Lemma 2 to find, that 

Ci+ioO 

a,(r)=(2xi)-vqr) [ aq(s)n~--l-~~(1 +s-~r)ds+D(r) 
(3.12) 

c,"ioc 

--1<a<c1, - 1 < Cl < 'la 
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where 5 (1 + s - y) is the Riemann zeta function [6]. 
Let us now investigate Eq. (3.12). We know that in the neighborhood of the point 

.s = y the function 5 (1 + s - y) can be written as [6] 

5 (1 + s - y) = (s - y)-’ + F (s - y) (3.13) 

where F (S - y) is a function analytic in the neighborhood of S = Y. 

In order to study the behavior of (3.12) in the region - 1 < o < 00 we perform, 
in the integral appearing in the equation, a shift along s to the left of the line of integ- 
ration - 1 < c1 < 1/2. The resulting transformations yield 

(3.14) 

S(r)=(2ni)-l \ O((s)jtY-l-sG(l +s-y)& (3.15) 
ce--ice 

CZ<G<l/2, - 1 < c2 < ‘I2 

Here D (y) is obtained from (3.8) and A from (2.17). It is clear that (3.14) continues 
(3.12) analytically into the region IS > ca. We can obtain the expression (3.2) from 

the formulas (3.11) and (3.14). Here s (y) is determined for all o > ca by means of 
the relations (3.15) and (3. lo), where A a cm) is the solution of (3.1). As the result the 
coefficients of the expansion (3.2) can be expressed, in particular, in the form of sums 

i Ao(m) (nm)-21-s (In nm)*, b=O,f, l=O, I( . . , L (3.16) 
m=1 

by displacing the line of integration in (3.15) tothe left by s = 2L + 2. 
When 1 > I , only a few terms in (3.16) suffice. For I = 0 the number of terms 

increases appreciably. At the same time the integral of the type (3.15) can be easily 
computed along the new line of integration. Using Lemma 3 we can express the remain- 
der term as the following contour integral: 

CNfiCZ 

RN = (2ni)-l s @(T)Gw, CN =(2N + 1) (3.17) 
cL~-im 

Setting in (3.17) y = CN f ip and using (3.14) and (3.10) we obtain, after lengthy 

manipulations, the estimate’(3.3). 

4. Numerical computations were performed for the case p = 0.31741, u0 = 0.70000 
and c = 0.5 and 1. The systems (1.8) and (2.15) were solved by the reduction me- 

thod. 20-th order solutions of (1.8) and (2.15) were found to differ from the correspond- 
ing 30-th order solutions by not more than 3.5%. The estimates (2.12), (2.10) and (2.4) 
indicate that for all p < 0.31741 the quantity in question varies insignificantly. Thus 
in the engineering practice the solution of the less cumbersome system (2.15) can be 
used whenever u < 0.31741 . 

The author thanks I. I. Vorovich for useful criticisms. 
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A solution is presented of the dynamical axisymmetric problem of elasticity 
theory for a cylinder of arbitrary length with given displacements on its curved 
and planar surfaces. The initial non-self-adjoint equations are converted into 
equivalent first order equations for an extended eigenvector by introducing cer- 
tain auxiliary functions. Arbitrary displacements given on the flat endface of 
the cylinder are expanded in series of eigensolutions of the problem by using 

these eigenvectors. Final formulas are obtained for the expansion coefficients. 

As a particular case, the solution ofthe statics problem of a cylinder [l] follows 
for 0 + 0 . An analogous problem has been examined in [Z] where it was red- 
uced to solving an infinite system of equations. The numerical method for sol- 

ving problems of such a class has been elucidated in [3]. 

1. Let us proceed from the differential equations in displacements 

ui2 [% + +$) + &a$ + (1.1) 

(U%’ - 11i2) 


